Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cureus ; 15(4): e38194, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-20241522

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect any part of the neuraxis. Many neurological conditions have been attributed to be caused by SARS-CoV-2, namely encephalopathy (acute necrotizing encephalopathy and encephalopathy with reversible splenial lesions), seizures, stroke, cranial nerve palsies, meningoencephalitis, acute disseminated encephalomyelitis (ADEM), transverse myelitis (long and short segment), Guillain-Barré syndrome (GBS) and its variants, polyneuritis cranialis, optic neuritis (ON), plexopathy, myasthenia gravis (MG), and myositis. The pathophysiology differs depending on the time frame of presentation. In patients with concomitant pulmonary disease, for instance, acute neurological illness appears to be caused by endotheliopathy and cytokine storm. Autoimmunity and molecular mimicry are causative for post-coronavirus disease 2019 (COVID-19)-sequelae. It has not yet been shown that the virus can penetrate the central nervous system (CNS) directly. This review aims to describe the disease and root pathogenic cause of the various neurological manifestations of COVID-19. We searched Pubmed/Medline and Google Scholar using the keywords "SARS-CoV-2" and "neurological illness" for articles published between January 2020 and November 2022. Then, we used the SWIFT-Review (Sciome LLC, North Carolina, United States), a text-mining workbench for systematic review, to classify the 1383 articles into MeSH hierarchical tree codes for articles on various parts of the nervous system, such as the CNS, peripheral nervous system, autonomic nervous system, neuromuscular junction, sensory system, and musculoskeletal system. Finally, we reviewed 152 articles in full text. SARS-CoV-2 RNA has been found in multiple brain areas without any histopathological changes. Despite the absence of in vivo virions or virus-infected cells, CNS inflammation has been reported, especially in the olfactory bulb and brain stem. SARS-CoV-2 genomes and proteins have been found in affected individuals' brain tissues, but corresponding neuropathologic changes are seldom found in these cases. Additionally, viral RNA can rarely be identified in neurological patients' CSF post hoc SARS-CoV-2 infection. Most patients with neurological symptoms do not have active viral replication in the nervous system and infrequently have typical clinical and laboratory characteristics of viral CNS infections. Endotheliopathy and the systemic inflammatory response to SARS-CoV-2 infection play a crucial role in developing neuro-COVID-19, with proinflammatory cytokine release mediating both pathological pathways. The systemic inflammatory mediators likely activate astrocytes and microglia across the blood-brain barrier, indirectly affecting CNS-specific immune activation and tissue injury. The management differs according to co-morbidities and the neurological disorder.

2.
Int J Mol Sci ; 24(6)2023 Mar 19.
Article in English | MEDLINE | ID: covidwho-2278127

ABSTRACT

Neurotropic viruses severely damage the central nervous system (CNS) and human health. Common neurotropic viruses include rabies virus (RABV), Zika virus, and poliovirus. When treating neurotropic virus infection, obstruction of the blood-brain barrier (BBB) reduces the efficiency of drug delivery to the CNS. An efficient intracerebral delivery system can significantly increase intracerebral delivery efficiency and facilitate antiviral therapy. In this study, a rabies virus glycopeptide (RVG) functionalized mesoporous silica nanoparticle (MSN) packaging favipiravir (T-705) was developed to generate T-705@MSN-RVG. It was further evaluated for drug delivery and antiviral treatment in a VSV-infected mouse model. The RVG, a polypeptide consisting of 29 amino acids, was conjugated on the nanoparticle to enhance CNS delivery. The T-705@MSN-RVG caused a significant decrease in virus titers and virus proliferation without inducing substantial cell damage in vitro. By releasing T-705, the nanoparticle promoted viral inhibition in the brain during infection. At 21 days post-infection (dpi), a significantly enhanced survival ratio (77%) was observed in the group inoculated with nanoparticle compared with the non-treated group (23%). The viral RNA levels were also decreased in the therapy group at 4 and 6 dpi compared with that of the control group. The T-705@MSN-RVG could be considered a promising system for CNS delivery for treating neurotropic virus infection.


Subject(s)
Nanoparticles , Rabies virus , Virus Diseases , Zika Virus Infection , Zika Virus , Humans , Animals , Mice , Rabies virus/physiology , Glycopeptides , Peptides/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
3.
Biomolecules ; 13(1)2023 01 13.
Article in English | MEDLINE | ID: covidwho-2199743

ABSTRACT

Billions of years of co-evolution has made mitochondria central to the eukaryotic cell and organism life playing the role of cellular power plants, as indeed they are involved in most, if not all, important regulatory pathways. Neurological disorders depending on impaired mitochondrial function or homeostasis can be caused by the misregulation of "endogenous players", such as nuclear or cytoplasmic regulators, which have been treated elsewhere. In this review, we focus on how exogenous agents, i.e., viral pathogens, or unbalanced microbiota in the gut-brain axis can also endanger mitochondrial dynamics in the central nervous system (CNS). Neurotropic viruses such as Herpes, Rabies, West-Nile, and Polioviruses seem to hijack neuronal transport networks, commandeering the proteins that mitochondria typically use to move along neurites. However, several neurological complications are also associated to infections by pandemic viruses, such as Influenza A virus and SARS-CoV-2 coronavirus, representing a relevant risk associated to seasonal flu, coronavirus disease-19 (COVID-19) and "Long-COVID". Emerging evidence is depicting the gut microbiota as a source of signals, transmitted via sensory neurons innervating the gut, able to influence brain structure and function, including cognitive functions. Therefore, the direct connection between intestinal microbiota and mitochondrial functions might concur with the onset, progression, and severity of CNS diseases.


Subject(s)
COVID-19 , Central Nervous System Diseases , Gastrointestinal Microbiome , Humans , SARS-CoV-2 , Brain-Gut Axis , Mitochondria
4.
NeuroQuantology ; 20(10):7001-7007, 2022.
Article in English | EMBASE | ID: covidwho-2067309

ABSTRACT

Background: The main trigger for Parkinson's disease is a mutated version of a protein called alpha-synuclein.This protein accumulates in dopamine-producing neurons. COVID-19 can increase the risk of Parkinson's and other neurological diseases. Methods:This review study was conducted by the library method. Results: The results showed that the virus can cause neuroinflammation, which, as a predisposing event, predisposes the brain to overreaction to subsequent neurological events. This secondary neurological event can be anything from another viral infection to poisoning and even aging. A secondary neurological event triggers an abnormal brain response that leads to nerve degeneration and eventually Parkinson's disease. The results show that the SARS-CoV-2 virus as a neurotropic virus can enter brain tissue. Conclusion: Therefore, the virus certainly has the potential to act as a predisposing event in increasing the risk of Parkinson's disease.

5.
Front Neurosci ; 16: 917867, 2022.
Article in English | MEDLINE | ID: covidwho-1963499

ABSTRACT

Background: Recent studies have reported that pulmo-neurotropic viruses can cause systemic invasion leading to acute respiratory failure and neuroinfection. The tetracycline class of secondary metabolites of microorganisms is effective against several migrating neurotropic viral disorders, as Japanese-Encephalitis (JE), Severe-Acute-Respiratory-Syndrome Coronavirus-2 (SARS-COV2), Human-Immunodeficiency-Virus (HIV), and Simian-Immunodeficiency-Virus (SIV). Another microbial secondary metabolite, cephalosporin, can be used for anti-viral combination therapy. However, a substantial public health debacle is viral resistance to such antibiotics, and, thus, one needs to explore the antiviral efficiency of other secondary metabolites, as phytochemicals. Hence, here, we investigate phytochemicals like podophyllotoxin, chlorogenic acid, naringenin, and quercetin for therapeutic efficiency in neurotropic viral infections. Methods: To investigate the possibility of the afferent neural pathway of migrating virus in man, MRI scanning was performed on human subjects, whereby the connections between cranial nerves and the brain-stem/limbic-region were assessed by fiber-tractography. Moreover, human clinical-trial assessment (n = 140, p = 0.028) was done for formulating a quantitative model of antiviral pharmacological intervention. Furthermore, docking studies were performed to identify the binding affinity of phytochemicals toward antiviral targets as (i) host receptor [Angiotensin-converting Enzyme-2], (ii) main protease of SARS-COV2 virus (iii) NS3-Helicase/Nucleoside triphosphatase of Japanese-encephalitis-virus, and the affinities were compared to standard tetracycline and cephalosporin antibiotics. Then, network pharmacology analysis was utilized to identify the possible mechanism of action of those phytochemicals. Results: Human MRI-tractography analysis showed fiber connectivity, as: (a) Path-1: From the olfactory nerve to the limbic region (2) Path-2: From the peripheral glossopharyngeal nerve and vagus nerves to the midbrain-respiratory-center. Docking studies revealed comparable binding affinity of phytochemicals, tetracycline, and cephalosporin antibiotics toward both (a) virus receptors, (b) host cell receptors where virus-receptor binds. The phytochemicals effectively countered the cytokine storm-induced neuroinflammation, a critical pathogenic pathway. We also found that a systems-biology-based double-hit mathematical bi-exponential model accounts for patient survival-curve under antiviral treatment, thus furnishing a quantitative-clinical framework of secondary metabolite action on virus and host cells. Conclusion: Due to the current viral resistance to antibiotics, we identified novel phytochemicals that can have clinical therapeutic application to neurotropic virus infection. Based on human MRI scanning and clinical-trial analysis, we demarcated the anatomical pathway and systems-biology-based quantitative formulation of the mechanism of antiviral action.

6.
Journal of Neurology, Neurosurgery and Psychiatry ; 93(6):123, 2022.
Article in English | EMBASE | ID: covidwho-1916440

ABSTRACT

A 34 year old female presented with fever, diarrhoea, confusion, and a decline in mobility, having recently tested positive for COVID-19. Her medical history included patent foramen ovale, primary ovarian failure and leukoencephalopathy which had been investigated in her 20s leading to a clinical diagnosis of Vanishing White Matter disease (VWM). On admission she deteriorated rapidly with decreased GCS requiring frequent critical care review. MRI demonstrated mild progression of the cerebral atrophy and slight increase in the 'cystic' changes in the white matter. Lumbar puncture was unremarkable. EEG demonstrated widespread cerebral dysfunction with frontotemporal emphasis but without seizure activity. She was managed with supportive care recovering to her baseline function within days. VWM is a leukodystrophy caused by recessive mutations in eukaryotic initiation factor 2B (eIF2b) complex. Adult onset presentations have been described which have a slowly progressive course. Patients with VWM are known to rapidly decline with fever, and mild head injury occasionally resulting in coma. Our case high-lights the potentially devastating effects of a neurotropic virus such as COVID-19 in VWM, and the need to consider rare genetic disorders in adult patients presenting with extensive white matter abnormalities on MRI and premature ovarian failure.

7.
DOLOR ; 36(2):89-93, 2021.
Article in Spanish | EMBASE | ID: covidwho-1880816

ABSTRACT

Long COVID is a term that describes a group of multiorganic symptoms that affect patients who have suffered from COVID-19 and who remain symptomatic for a sustained period of time after the acute phase of the disease. Amongst those symptoms, pain is one of the most frequently reported, shaping into different specific syndromes such as persistent thoracic pain, generalized pain, arthralgia, myalgia and cephalalgia. Multiple mechanisms can explain the onset and perpetuation of chronic pain in these patients. It is known that SARS-CoV-2 is a neurotropic virus that can alter the somatosensory nervous system and which can also cause an intense autoimmune response with effects on multiple organs and systems. We present three clinical cases of long COVID where pain was the main symptom altogether with anxiety, depression, insomnia, catastrophic thoughts related to pain, cognitive impairment and post-traumatic stress disorder. These all show the existing complexity in the management of this new-found entity. Given the extensive number of SARS-CoV-2 infections reported globally, chronic pain in relation to long COVID can become a public health issue. Therefore, it is necessary to make it visible and to establish strategies to prevent it and confront it.

8.
J Mol Biol ; 434(3): 167243, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1851574

ABSTRACT

Brain organoids are self-organized three-dimensional aggregates generated from pluripotent stem cells. They exhibit complex cell diversities and organized architectures that resemble human brain development ranging from neural tube formation, neuroepithelium differentiation, neurogenesis and gliogenesis, to neural circuit formation. Rapid advancements in brain organoid culture technologies have allowed researchers to generate more accurate models of human brain development and neurological diseases. These models also allow for direct investigation of pathological processes associated with infectious diseases affecting the nervous system. In this review, we first briefly summarize recent advancements in brain organoid methodologies and neurodevelopmental processes that can be effectively modeled by brain organoids. We then focus on applications of brain organoids to investigate the pathogenesis of neurotropic viral infection. Finally, we discuss limitations of the current brain organoid methodologies as well as applications of other organ specific organoids in the infectious disease research.


Subject(s)
Brain , Central Nervous System Viral Diseases , Organoids , Brain/growth & development , Brain/virology , Central Nervous System Viral Diseases/virology , Humans , Neurogenesis , Organoids/virology
9.
Cureus ; 13(11): e19655, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1551840

ABSTRACT

Viral infections are frequently present before the clinical manifestation of Guillain-Barre syndrome (GBS). Multiple studies on coronaviruses have shown that these viruses have neurotropic characteristics, and their molecular mimicry can induce inflammatory demyelinating neuropathy. Herein, we describe a case of a GBS in an 85-year-old patient infected with SARS-CoV-2, manifested with acute progressive symmetric ascending quadriparesis, urinary dysautonomia, and dysphagia, who responded well to treatment with intravenous human immunoglobulin.

10.
Front Neurosci ; 15: 674576, 2021.
Article in English | MEDLINE | ID: covidwho-1533688

ABSTRACT

Oropouche virus (OROV) is an emerging arbovirus in South and Central Americas with high spreading potential. OROV infection has been associated with neurological complications and OROV genomic RNA has been detected in cerebrospinal fluid from patients, suggesting its neuroinvasive potential. Motivated by these findings, neurotropism and neuropathogenesis of OROV have been investigated in vivo in murine models, which do not fully recapitulate the complexity of the human brain. Here we have used slice cultures from adult human brains to investigate whether OROV is capable of infecting mature human neural cells in a context of preserved neural connections and brain cytoarchitecture. Our results demonstrate that human neural cells can be infected ex vivo by OROV and support the production of infectious viral particles. Moreover, OROV infection led to the release of the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α) and diminished cell viability 48 h post-infection, indicating that OROV triggers an inflammatory response and tissue damage. Although OROV-positive neurons were observed, microglia were the most abundant central nervous system (CNS) cell type infected by OROV, suggesting that they play an important role in the response to CNS infection by OROV in the adult human brain. Importantly, we found no OROV-infected astrocytes. To the best of our knowledge, this is the first direct demonstration of OROV infection in human brain cells. Combined with previous data from murine models and case reports of OROV genome detection in cerebrospinal fluid from patients, our data shed light on OROV neuropathogenesis and help raising awareness about acute and possibly chronic consequences of OROV infection in the human brain.

11.
Cells ; 10(7)2021 07 20.
Article in English | MEDLINE | ID: covidwho-1389305

ABSTRACT

Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.


Subject(s)
Aging , Brain/physiopathology , Inflammation/physiopathology , Microglia/virology , Virus Diseases/physiopathology , Animals , Brain/immunology , Brain/virology , COVID-19/immunology , COVID-19/physiopathology , COVID-19/virology , Humans , Inflammation/immunology , Inflammation/virology , Microglia/immunology , Microglia/pathology , SARS-CoV-2/physiology , Virus Diseases/immunology , Virus Diseases/virology
12.
Front Cell Neurosci ; 15: 662578, 2021.
Article in English | MEDLINE | ID: covidwho-1175546

ABSTRACT

At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in China, causing a new coronavirus disease, termed COVID-19 by the WHO on February 11, 2020. At the time of this paper (January 31, 2021), more than 100 million cases have been recorded, which have claimed over 2 million lives worldwide. The most important clinical presentation of COVID-19 is severe pneumonia; however, many patients present various neurological symptoms, ranging from loss of olfaction, nausea, dizziness, and headache to encephalopathy and stroke, with a high prevalence of inflammatory central nervous system (CNS) syndromes. SARS-CoV-2 may also target the respiratory center in the brainstem and cause silent hypoxemia. However, the neurotropic mechanism(s) by which SARS-CoV-2 affects the CNS remain(s) unclear. In this paper, we first address the involvement of astrocytes in COVID-19 and then elucidate the present knowledge on SARS-CoV-2 as a neurotropic virus as well as several other neurotropic flaviviruses (with a particular emphasis on the West Nile virus, tick-borne encephalitis virus, and Zika virus) to highlight the neurotropic mechanisms that target astroglial cells in the CNS. These key homeostasis-providing cells in the CNS exhibit many functions that act as a favorable milieu for virus replication and possibly a favorable environment for SARS-CoV-2 as well. The role of astrocytes in COVID-19 pathology, related to aging and neurodegenerative disorders, and environmental factors, is discussed. Understanding these mechanisms is key to better understanding the pathophysiology of COVID-19 and for developing new strategies to mitigate the neurotropic manifestations of COVID-19.

13.
J Neurosci Res ; 99(3): 750-777, 2021 03.
Article in English | MEDLINE | ID: covidwho-938490

ABSTRACT

Without protective and/or therapeutic agents the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection known as coronavirus disease 2019 is quickly spreading worldwide. It has surprising transmissibility potential, since it could infect all ages, gender, and human sectors. It attacks respiratory, gastrointestinal, urinary, hepatic, and endovascular systems and can reach the peripheral nervous system (PNS) and central nervous system (CNS) through known and unknown mechanisms. The reports on the neurological manifestations and complications of the SARS-CoV-2 infection are increasing exponentially. Herein, we enumerate seven candidate routes, which the mature or immature SARS-CoV-2 components could use to reach the CNS and PNS, utilizing the within-body cross talk between organs. The majority of SARS-CoV-2-infected patients suffer from some neurological manifestations (e.g., confusion, anosmia, and ageusia). It seems that although the mature virus did not reach the CNS or PNS of the majority of patients, its unassembled components and/or the accompanying immune-mediated responses may be responsible for the observed neurological symptoms. The viral particles and/or its components have been specifically documented in endothelial cells of lung, kidney, skin, and CNS. This means that the blood-endothelial barrier may be considered as the main route for SARS-CoV-2 entry into the nervous system, with the barrier disruption being more logical than barrier permeability, as evidenced by postmortem analyses.


Subject(s)
COVID-19/complications , COVID-19/metabolism , Central Nervous System/metabolism , Nervous System Diseases/etiology , Nervous System Diseases/metabolism , Peripheral Nervous System/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/virology , COVID-19/transmission , Central Nervous System/virology , Humans , Nervous System Diseases/virology , Olfactory Nerve/metabolism , Olfactory Nerve/virology , Peripheral Nervous System/virology
14.
ACS Chem Neurosci ; 11(18): 2793-2803, 2020 09 16.
Article in English | MEDLINE | ID: covidwho-741665

ABSTRACT

As the coronavirus disease 2019 (COVID-19) pandemic unfolds, neurological signs and symptoms reflect the involvement of targets beyond the primary lung effects. The etiological agent of COVID-19, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits neurotropism for central and peripheral nervous systems. Various infective mechanisms and paths can be exploited by the virus to reach the central nervous system, some of which bypass the blood-brain barrier; others alter its integrity. Numerous studies have established beyond doubt that the membrane-bound metalloprotease angiotensin-converting enzyme 2 (ACE2) performs the role of SARS-CoV-2 host-cell receptor. Histochemical studies and more recently transcriptomics of mRNA have dissected the cellular localization of the ACE2 enzyme in various tissues, including the central nervous system. Epithelial cells lining the nasal mucosae, the upper respiratory tract, and the oral cavity, bronchoalveolar cells type II in the pulmonary parenchyma, and intestinal enterocytes display ACE2 binding sites at their cell surfaces, making these epithelial mucosae the most likely viral entry points. Neuronal and glial cells and endothelial cells in the central nervous system also express ACE2. This short review analyzes the known entry points and routes followed by the SARS-CoV-2 to reach the central nervous system and postulates new hypothetical pathways stemming from the enterocytes lining the intestinal lumen.


Subject(s)
Betacoronavirus/pathogenicity , Central Nervous System Diseases/virology , Coronavirus Infections/complications , Pneumonia, Viral/complications , COVID-19 , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL